Можно ли совмещать разные планки оперативной памяти в одном компьютере

Схема работы оперативной памяти

Тайминг (латентность) – параметр, отображающий временную задержку при передаче сигналов (данных) между процессором и ячейками оперативной памяти. «Ожидание» измеряется в тактах и часто записывается в виде комбинации из четырех или трех значений, следующих подряд через дефис, вроде 9-9-9-24 или 7-7-7. Чем меньше числа – тем быстрее память.

Но закономерность не прямолинейная – на производительность выбранных планок ОЗУ влияют еще десятки сторонних параметров, начиная с частоты, напряжения и заканчивая двухканальным режимом работы.

А еще спрос на тайминги перестал появляться из-за возросшей производительности процессоров: появившийся кэш у ЦП сократил зависимость от скорости обращения к ячейкам оперативной памяти. Чаще процессоры справляются с тяжелыми задачами без дополнительной поддержки со стороны. Но так дела обстоят в теории – на практике ситуации часто меняются и, кроме продолжительных тестов, на результативность работы ОЗУ, ЦП и необходимых таймингов свет не пролить.

Если же отталкиваться от необходимых «задержек» в момент выбора оперативной памяти, то предпочтительность лучше отдавать тем планкам, где цифры, разделяемые дефисом, меньше. Как вариант – память 15-17-17-35 быстрее, чем 19-19-19-43. Опять же, если остальные показатели и спецификации равны – частота, пропускная способность, стоимость. Если же цена сильно разнится, и производитель предлагает переплатить 20 или даже 30 процентов за мнимую скорость и быстродействие, то о переплате лучше задуматься трижды.

Выиграть в «мощности» едва ли получится, а лишние деньги выгоднее потратить на новый SSD или даже материнскую плату с грамотным расположением сокета под процессор и дополнительным местом под охлаждение, из-за чего не придется мудрить с расположением планок.

Основные характеристики оперативной памяти

При выборе оперативной памяти, нужно обязательно учитывать следующие характеристики:

    • тип памяти,
    • форм-фактор,
    • ключ модуля памяти,
    • объём модуля ОЗУ,
    • тактовая частота,
    • тайминг.

Тип памяти

Скорость чтения/записи важный показатель оперативной памяти, именно поэтому идёт постоянная борьба за производительность ОЗУ. Технологии не стоят на месте, периодически появляются новые стандарты оперативной памяти, как правило, превосходящие своих предшественников по скорости в 2 раза. Наибольшее распространение получила синхронная динамическая память с произвольным доступом (SDRAM), эволюционная линейка которой выглядит следующим образом: DDR, DDR2, DDR3, DDR4, DDR5.

Форм-фактор модуля памяти

Планки оперативной памяти имеют различный форм-фактор исполнения в зависимости от того, где будет эксплуатировать ОЗУ в ноутбуке или компьютере. Форм-фактор оперативной памяти для стационарных компьютеров именуется DIMM, а для ноутбуков — SO-DIMM.

Ключ модуля оперативной памяти

Печатная плата (модуль/планка), на которой размещены чипы памяти, имеет специальный ключ (прорезь), в зависимости от типа SDRAM-памяти: DDR, DDR2, DDR3, DDR4, DDR5. Связано это с тем, что типы памяти не совместимы между собой.

Объём модуля памяти

Объём оперативной памяти, на ряду с характеристиками прочих комплектующих ПК, непосредственно влияет на производительность системы в целом. При достаточном объёме ОЗУ, операционная система реже задействует файл подкачки, что исключает лишние операции чтения/записи, которые проходят на более низких скоростях.

Объём одного модуля оперативной памяти, зависит от типа памяти.

Тип памяти Объём модуля памяти
Минимальный Максимальный
DDR 256 МБ 1 ГБ
DDR 2 512 МБ 4 ГБ
DDR 3 1 ГБ 16 ГБ
DDR 4 4 ГБ 128 ГБ

Тактовая частота оперативной памяти

Параметр зависит от типа оперативной памяти: DDR, DDR 2, DDR 3, DDR 4, DDR 5. Чем выше тактовая частота, тем лучше. Обязательно стоит учитывать характеристики процессора, который должен поддерживать соответствующую тактовую частоту ОЗУ.

Обязательно стоит учитывать режим работы — одно- или двухканальный. Если процессор способен работать с максимальной частотой определённого типа памяти в одноканальном режиме, он может не поддерживать данную частоту в двухканальном режиме. При этом, система запустится и будет работать, но на более низкой частоте.

Стоит отметить тот факт, что оперативная память, независимо от типа, в процессе своей работы поддерживает весь диапазон тактовых частот, расположенных ниже своей максимальной частоты. К примеру, максимальная тактовая частота модуля памяти DDR 4 2400 МГц — ОЗУ может работать на следующих частотах: 2400, 2133, 1866, 1600.

Частота, на которой запустится оперативная память (без учёта разгона) зависит от характеристик процессора, чипсета материнской платы и установленной видеокарты. Если, какой-то из компонентов системы будет «тормозить», то память не запустится на пределе своих возможностей.

Тип памяти Тактовая частота модуля памяти, МГц
Минимальная Максимальная
DDR 100 350
DDR 2 200 600
DDR 3 800 2400
DDR 4 1600 3200

Тайминг оперативной памяти

Тайминг или латентность — время задержки доступа к ячейкам памяти между операциями чтения/записи. Важный параметр оперативной памяти.

CAS Latency (CL) — Один из самых значимых показателей: именно он говорит, сколько времени в целом уходит на поиск необходимых данных после того, как ЦП попросит доступ на считывание. Чем меньше показатель CAS Latency, тем лучше.

RAS to CAS Delay (tRCD) — показатель демонстрирует время полного доступа к данным, то есть задержку, вызванную поиском нужного столбца и строки в двухмерной таблице. Чем меньше значение, тем выше быстродействие ОЗУ.

Row Precharge Delay (tRP) — ОЗУ — динамическая память, ее ячейки время от времени разряжаются и нуждаются в периодической перезарядке. По этой причине данные, которые содержатся в ней, обновляются. Это называется регенерацией ОЗУ. Таким образом, данный показатель в тактах отображает временной отрезок, проходящий между сигналом на зарядку — регенерацию ОЗУ — и разрешением на доступ к следующей строчке информации. Чем меньше этот параметр, тем быстрее работает память.

Activate to Precharge Delay (tRAS) — минимальное время активности строки, то есть минимальное время между активацией строки (ее открытием) и подачей команды на предзаряд (начало закрытия строки). Строка не может быть закрыта раньше этого времени. Высокий показатель данного параметра заметно сокращает производительность памяти, из-за того, что закрытие ячейки требует дополнительного времени, поэтому чем ниже значение tRAS, тем лучше.

Как правильно настроить параметры ОЗУ в BIOS

Экспериментировать над характеристиками оперативной памяти (напряжение, частота, тайминги) с вероятностью в 99 % придется вручную. Исключение – софтверные инструменты, вроде DRAM Calculator For Ryzen, рассчитывающие для процессоров AMD необходимые настройки, причем с расчетом на безопасность (исключаются «синие экраны смерти» или нестабильная производительность) и поправками на остальные комплектующие.

С Intel ситуация сложнее – придется искать помощи на тематических форумах или на страницах YouTube, где энтузиасты уже протестировали нестандартные сценарии и готовы поделиться результатами. Спасением станет и AIDA64 с конфигурациями и рекомендациями.

Несмотря на сложности с определением необходимых характеристик, взаимодействовать с теми же разделами BIOS намного легче: материнские платы последнего поколения сходу предлагают заглянуть в раздел Overclocking (у сторонних производителей подобные разделы скрываются в Advanced Mode или AI Tweaker) и сменить частоты, тайминги или и вовсе активировать экстремальный режим производительности.

Важно помнить – параметры ОЗУ связаны и, повышая ту же частоту, придется менять и тайминги. И уж тем более бессмысленно рассчитывать на прирост производительности, если в каждом из разделов выставляются случайные значения

Необдуманные эксперименты приведут к проблемам при загрузке ПК, «синим экранам смерти» при тестировании и автоматическому сбросу параметров в BIOS.

Что такое тайминги и на что они влияют?

10 лет назад 26 февраля 2010 в 18:44 3163

Что такое тайминги и на что они влияют?

Тайминги неспроста называют также «задержками» – они характеризуют именно промежутки времени, проходящие между поступлением различных команд и их выполнением. Прежде чем двигаться далее, пожалуй, стоит сделать небольшое отступление и рассказать о некоторых особенностях организации памяти – в дальнейшем это нам пригодится. Начнем с логической части. В этом плане одну микросхему ОЗУ можно представить в виде двухмерного массива (то есть таблицы) ячеек – соответственно, адрес каждой из них задается номерами строки и столбца, на пересечении которых она лежит.

Теперь немного о физике: за хранение информации отвечают конденсаторы с обслуживающей их транзисторной обвязкой. Причем текущее состояние ячейки определяет именно конденсатор: если на нем есть заряд, хранится единица, в противном случае – ноль. При считывании же информации происходит разрядка этого элемента, то есть если там было значение 1, оно потеряется. Поэтому после считывания производится восстановление прежнего состояния конденсатора – его перезарядка. На этом небольшое лирическое отступление можно закончить и вернуться к описанию задержек, благо минимально необходимые знания у нас уже есть.

При кратком описании модуля памяти обычно упоминаются четыре тайминга, значения которых (в тактах) записываются через дефис – например, 7-7-7-20. Первое число обозначает задержку под названием tCAS, она же CL (CAS# latency). Аббревиатура «CAS» расшифровывается как «column access strobe», то есть «сигнал выбора столбца». Соответственно, в данном случае семь тактов пройдет между его подачей и получением доступа к нужной ячейке.

Кстати, именно ячейке, а не ячейкам – сигнал выбора столбца (RAS# – row access strobe) поступает до импульса CAS#, так что подача второго из них формирует окончательный адрес. И как раз задержку между двумя этими сигналами характеризует тайминг tRCD (RAS# to CAS# delay), значение которого в характеристиках модулей памяти указывается сразу после CL.

Третье число в вышеприведенном списке – это величина tRP (RAS# precharge), обозначающая промежуток между поступлением команды восстановления заряда (precharge) и ее выполнением, то есть возвратом столбца к прежнему состоянию. Но абы когда такую операцию совершать нельзя – надо дождаться завершения выполнения предыдущих операций со строкой.

Для обозначения того временного отрезка, в течение которого строка пребывает в активном состоянии, используется тайминг tRAS (он же active to precharge delay, он же RAS# activate to precharge). В нашем случае сигнал восстановления заряда будет подан через двадцать тактов после команды RAS#, а выполнен еще через семь тактов. Как нетрудно догадаться, tRAS не может быть меньше суммы tRCD и CL.

К вышеприведенной последовательности значений задержек также часто прибавляется еще одно, 1T или 2T, соответствующее таймингу под названием command rate. Данный параметр характеризует промежуток времени между подачей сигналов CS# (chip select – команда выбора чипа) и RAS#. Вообще количество таймингов весьма велико – помимо описанных выше «основных» существуют еще и «дополнительные». Полный список я приводить не буду, но о некоторых все же расскажу.

Например, tRC (refresh cycle) соответствует промежутку времени между осуществлением доступа к двум разным строкам – от подачи на первую из них сигнала RAS# и до окончания восстановления ее заряда. Задержка между завершением поступления записываемых данных и перезарядкой строки (восстанавливать ее нужно целиком, так как сигнал RAS# обнуляет все ячейки одного ряда) обозначается tWR (write recovery). А вот считывание информации относительно записи сдвинуто во времени на такое количество тактов, которое равно значению tWTR (write to read delay).

Тайминги

Про тайминги уже было пару слов на сайте, но так как было это давно, то пройдемся по ним еще раз.

Другими словами оные представляют из себя временные задержи или латентность (CAS Latency, CL) оперативки. Значение сие указывается в виде нескольких последовательных цифр (например, 3-3-3). Это записанные подряд следующие параметры: «CAS Latency» (время рабочего цикла), «RAS to CAS Delay» (время полного доступа) и «RAS Precharge Time». От них в значительной степени зависит пропускная способность участка «процессор-память» и, как следствие, быстродействие всей системы. Чем меньше величина этих таймингов, тем быстрее работает оперативная память. Тайминги измеряются в наносекундах (нс) и могут принимать значение от 2 до 9 (каждая цифра — это количество тактов шины на выполнение той или иной операции).

Иногда к этим трём параметрам добавляется четвёртый (например, 9-9-9-27), называющийся «DRAM Cycle Time Tras/Trc» (характеризует быстродействие всей микросхемы памяти).

Если указывается только одна цифра (например, CL2), то она означает только первый параметр — CAS Latency, остальные при этом не обязательно равны ему, а обычно даже выше, так что имейте это в виду и не попадайтесь на маркетинговый ход производителя.

Меньшие значения означают более высокое быстродействие. Правда есть одна проблемка: чем больше частота оперативной памяти — тем выше ее тайминги, а поэтому, следует выбирать оптимальное соотношение этих двух параметров, исходя из бюджета. Есть, например, специальные модели у разных производителей, в примечании к которым указано «Low Latency». Это означает, что данная модель при более высокой рабочей частоте имеет меньшее время задержек, но стоят они значительно дороже.

Резюмируем таймингоэпопею: при покупке лучше выбирать память с наименьшими таймингами, а если Вы хотите добавить модуль к уже установленному, то CL у этой памяти должны совпадать с таймингами уже установленной.

На что влияют тайминги

Задержки оперативной памяти частично определяют быстродействие и производительность операционной системы и помогают заранее определить, с какой скоростью процессор сможет передавать задачи ячейкам ОЗУ и когда начнется обработка выгруженной информации. Разница часто заметна исключительно в режиме «рабочего взаимодействия» с ПК. Когда то и дело передаются процессы и службы на обработку в память.

С развлечениями ситуация сложнее – даже после ряда экспериментов заметить разницу намного сложнее, чем хотелось бы. Но порой долгожданный прирост FPS все же встречается, но с нюансом: память с увеличенной задержкой и большими частотами добавляет производительности, а с показателями, наоборот – вызывает разрывы изображения и странные подвисания. Но, по большей части, результаты строго индивидуальные.

Производители оперативной памяти: какой лучше. И – заключительные советы

Кто только не производит ОЗУ: и процессорный гигант AMD, и Samsung с LG, и многочисленные Kingston, Corsair и т.п. В наиболее многочисленном сегменте оперативной памяти разницы между производителями толком нет. Все они выпускают надёжную и быструю DDR, которая способна на некоторый разгон.

Задумываться о производителе следует лишь в случаях, когда требуется более серьёзный оверклокинг, особые требования к надёжности, и, пожалуй, к художественной красоте оперативной памяти. Всё верно, более дорогие модели выпускаются с необязательными, но потрясающие симпатичными радиаторами охлаждения модулей.

И ещё. Оперативная память – замечательно надёжная штука. Её вполне безопасно брать с рук, «б/у» – скорее всего, отработает она ещё много лет, с теми же характеристиками и энергопотреблением.

Сколько оперативной памяти нужно для планшета?

Никто и никогда не требует от планшетов выполнения сложных программных задач, поэтому их требования по отношению к оперативной памяти, как правило, довольно низкие — как и у многих смартфонов.

Однако мультизадачность и более сложное программное обеспечение продолжают набирать популярность, из-за чего требования планшетов становятся все более похожими на ноутбуки. Текущие параметры обычно варьируются от 2 ГБ до 16 ГБ ОЗУ, при этом другие характеристики, такие как время автономной работы и скорость процессора, если говорить о планшетах, часто имеют большее значение.

Например, iPad имеет 2 ГБ оперативной памяти, однако он больше ориентирован на яркий дисплей и длительное время автономной работы. Между тем, последний 12,9-дюймовый iPad Pro от Apple имеет аж 6 ГБ оперативной памяти, благодаря чему устройство можно занести под категорию «2-в-1». Такие девайсы, как Microsoft Surface Book 2, по умолчанию имеют 16 ГБ, потому что это больше ноутбук, чем планшет – несмотря на то, что необычный шарнир позволяет превратить устройство в легкий и удобный планшет.

В конечном итоге рекомендации по выбору оперативной памяти планшета выглядят таким образом:

  • 2 ГБ: для базовых задач.
  • 4 ГБ: для большинства планшетов.
  • 8 ГБ: если вы планируете использовать планшет в качестве компьютера.

Однако не стоит забывать, что планшеты обычно отыгрывают роль дополнительных устройств, которые занимают место где-то посредине смартфона и компьютера. Если вы больше склоняетесь к замене ноутбука, купите планшет с таким объёмом оперативной памяти, который вам понадобится для любого другого настольного компьютера или лэптопа.

Назначение таймингов

Латентность (задержки между отправкой и обработкой команд) оперативной памяти записываются производителем через дефис в специальную последовательность CL-RCD-RP-RAS. Подробнее в каждом значении разберемся ниже.

CAS Latency

Отображает время, необходимое для получения данных от центрального процессора, с последующей обработкой и передачей обратно. Описывается формулой «T = (CL / количество передач в секунду) * 2000».

RAS-CAS

Показатель RCD определяет скорость перемещения информации между строками и столбцами ячеек, доступных в модулях ОЗУ. Задержки определяют, в том числе, и переход от процессов чтения к записи и обратно.

RAS Precharge (RP или tRP)

Указывает время, необходимое для перехода к новой строке с предварительной выгрузкой информации из предыдущей. Часто показатель RP равен RCD (RAS-CAS).

Виды слотов

Самые первые интерфейсы на материнской плате были примитивными. В них ставилась оперативная памяти типа 30 pin SIPP. Но с каждым годом выходил ее новый стандарт, а под него подстраивались интерфейсы подключения на плате. Так появились разъемы:

  • 72 pin SIMM;
  • 168 pin DIMM;
  • 184 pin CRIMM Spacer;
  • 64bit RDIMM;
  • XDR;
  • 184 pin DDR;
  • 240 pin DDR2;
  • 240 pin DDR3;
  • DDR4.

Самый современный стандарт, который используется в материнский платах, – разъемы для оперативной памяти DDR4. Пока что не существует оперативной памяти DDR5, однако ее появление – дело времени. Тогда, кстати, будут появляться и новые материнские платы с разъемами под данные чипы.

Для чего нужна оперативная память

Оперативная память используется как временный буфер для информации, обрабатываемой процессором или встроенной графической системой. Здесь хранятся файлы и данные программ, которые должны быть выполнены, а также текстуры, отображаемые в игре.

Слишком мало оперативной памяти, это частая причина «зависания» компьютера с большим количеством задач

Теоретически, принцип «чем больше, тем лучше» здесь работает. Но, при выборе оперативной памяти также стоит обратить внимание на другие параметры

  • Тип памяти – в настоящее время наиболее популярным типом оперативной памяти является стандарт DDR4, который предлагает более высокую производительность, более низкий спрос на электроэнергию и допускает большую емкость. Тем не менее, некоторые ноутбуки всё ещё имеют старые модули DDR3 или низковольтные модули DDR3L. Различные типы памяти несовместимы друг с другом, и модули для настольного компьютера (тип DIMM) не подходят для ноутбука (тип SO-DIMM). Кроме того, в самых компактных конструкциях оперативная память запаяна на материнской плате, поэтому её невозможно заменить.
  • Параметры памяти – тактовая частота и латентность влияют на производительность памяти (например, память CL17 с частотой 2133 МГц будет медленнее, чем CL15 с частотой 2666 МГц). Однако, стоит отметить, что не каждый ноутбук способен использовать более быстрые модули.
  • Режим памяти – большинство доступных ноутбуков основаны на процессорах, которые имеют двухканальный контроллер оперативной памяти. Использование двухканального режима позволяет задействовать весь потенциал подсистемы оперативной памяти, что ведёт к повышению производительности в играх и приложениях. Однако, стоит помнить, что в такой конфигурации все разъёмы для памяти часто оказываются заняты и модернизация системы предполагает замену обоих модулей.

Количество и параметры оперативной памяти должны быть адаптированы к использованию ноутбука. Одни требования будут касаться ноутбука, используемого для работы в интернете, другие – в случае эффективной модели для игры, третьи – в мобильной рабочей станции для профессиональных приложений.

Производитель

Производителей комплектующих ПК множество. Оптимальный вариант — руководствоваться репутацией бренда, отзывами о производительности и надежности, а также ценовой политикой компании. На данный момент популярными являются:

  • Corsair.
  • Adata.
  • Kingston.
  • GOODRAM.
  • Kingmax.
  • Transcend.

Каждый производить предоставляет широкий модельный ряд, так что подобрать оперативку по необходимым характеристикам, качеству и цене не составляет труда. Да и в общем разобраться, как добавить оперативной памяти в компьютер и как выбрать планки ОЗУ, несложно. Достаточно поверхностно ориентироваться в технических характеристиках.

Режимы работы памяти

Память может работать в одноканальном (Single Channel), двухканальном (Dual Channel), трехканальном (Triple Channel) или четырехканальном режиме (Quad Channel).

В одноканальном режиме запись данных происходит последовательно в каждый модуль. В многоканальных режимах запись данных происходит параллельно во все модули, что приводит к значительному увеличению быстродействия подсистемы памяти.

Одноканальным режимом работы памяти ограничены только безнадежно устаревшие материнские платы с памятью DDR и первые модели с DDR2.

Все современные материнские платы поддерживают двухканальный режим работы памяти, а трехканальный и четырехканальный режим поддерживают только некоторые единичные модели очень дорогих материнских плат.

Главным условием работы двухканального режима является наличие 2 или 4 планок памяти. Для трехканального режима необходимо 3 или 6 планок памяти, а для четырехканального 4 или 8 планок.

Желательно, чтобы все модули памяти были одинаковыми. В противном случае работа в двухканальном режиме не гарантируется.

Если вы хотите добавить память на старый компьютер и ваша материнская плата поддерживает двухканальный режим, постарайтесь подобрать максимально идентичную по всем параметрам планку. Лучше всего продать старую и купить 2 новых одинаковых планки.

В современных компьютерах контроллеры памяти были перенесены с материнской платы в процессор

Теперь не так важно, чтобы модули памяти были одинаковыми, так как процессор в большинстве случаев все равно сможет активировать двухканальный режим. Это значит, что если вы в будущем захотите добавить память на современный компьютер, то не обязательно будет искать точь в точь такой же модуль, достаточно выбрать наиболее похожий по характеристикам

Но все же я рекомендую, что бы модули памяти были одинаковыми. Это даст  вам гарантию ее быстрой и стабильной работы.

С переносом контроллеров памяти в процессор появились еще 2 режима двухканальной работы памяти – Ganged (спаренный) и Unganged (неспаренный). В случае если модули памяти одинаковые, то процессор может работать с ними в режиме Ganged, как и раньше. В случае, если модули отличаются по характеристикам, то для устранения перекосов в работе с памятью процессор может активировать режим Unganged. В целом скорость работы памяти в этих режимах практически одинаковая и не имеет никакой разницы.

Единственным недостатком двухканального режима является то, что несколько модулей памяти стоят дороже, чем один такого же объема. Но если вы не очень сильно стеснены в средствах, то покупайте 2 планки, скорость работы памяти будет значительно выше.

Если вам нужно, скажем 16 Гб оперативки, но вы пока не можете себе этого позволить, то можно приобрести одну планку на 8 Гб, чтобы в будущем добавить еще одну такую же. Но все же лучше приобретать две одинаковых планки сразу, так как потом может не получиться найти такую же и вы столкнетесь с проблемой совместимости.

Оцените статью
Рейтинг автора
5
Материал подготовил
Андрей Измаилов
Наш эксперт
Написано статей
116
Добавить комментарий